THE EFFECT OF TWO COMMERCIAL FEEDS AND DIFFERENT C:N RATIOS ON SELECTED WATER QUALITY INDICATORS AND PERFORMANCE OF Litopenaeus vannamei JUVENILES CULTURED AT HIGH DENSITY IN A BIOFLOCDOMINATED ZERO-EXCHANGE OUTDOOR TANK SYSTEM

Tzachi M. Samocha¹, Wujie Xu^{1, 2}, Timothy C. Morris¹, and Abdul Mehdi Ali³

¹ Texas AgriLife Research Mariculture Lab at Flour Bluff, Corpus Christi, Texas, USA
 ² The Key Laboratory of Mariculture, Ocean University of China, Qingdao, Shandong, China
 ³Earth and Planetary Sciences Department, The University of New Mexico

Aquaculture 2013 Nashville, Tennessee, USA. February 21-25, 2013

United States
Department of
Agriculture

National Institute of Food and Agriculture

Introduction

Operating zero-exchange biofloc-dominated systems can potentially:

- > Increase bio-security
- Increase production
- > Reduce effluent discharge
- Reduce water usage

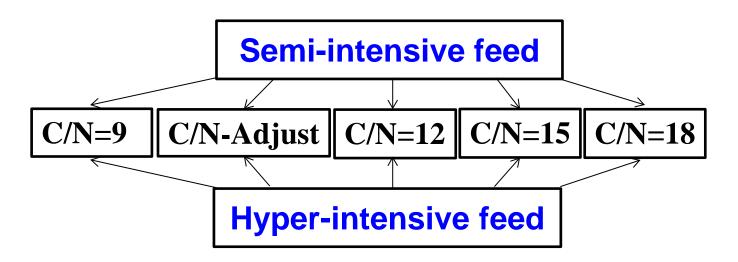
- > Help maintain optimal water quality
- > Serve as a supplemental food source

Introduction

Choosing a appropriate feed is important:

- Maximize shrimp growth
- Reduce feed cost
- Minimize negative impact on WQ

Developing microbial flocs is necessary to:


- Control nitrogen
- > Recycle feed

Inoculation and adding carbohydrates are practical and effective means of enhancing the development of microbial flocs

Objectives & Experimental Design

Evaluate the effect of two commercial shrimp feeds and different C:N ratios on selected water quality indicators and shrimp performance in a biofloc-dominated zero-exchange tank system

2 × 5 Factorial Experiment Design

Juvenile L. vannamei

- \triangleright Average weight: 2.21 ± 0.11 g
- > Stocking density: 300 shrimp/m³

Experimental system

- > Forty 800-L HDPE tanks
- > Equipped with 2 airstones for aeration
- > Filled with biofloc-rich water (500 L)

Tank management

- > No water exchange
- Freshwater was added to compensate for evaporative losses
- ➤ NaHCO₃ was added to maintain pH above 7.2

Feeds and Feeding

- Two 35% CP commercial feeds: Semi-intensive & Hyper-intensive feeds (SI-35 & HI-35)
- > Feed offered in two equal portions during the day: 08:30 and 18:30
- Rations were adjusted based on feed tray observations and weekly shrimp growth sampling

Proximate composition of the two experimental feeds (% dry weight basis)

	Crude protein	Crude fat	Crude fiber	Ash	Moisture
SI-35	35.8	9.86	2.69	11.11	7.97
HI-35	36.1	7.30	1.61	9.55	9.07

Carbohydrate supplementation

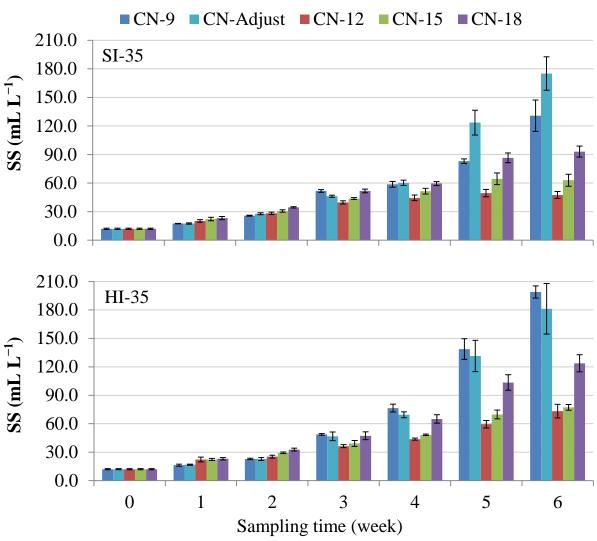
- > C/N: 9, 12, 15, 18 based on the carbon and nitrogen contents of the feeds and molasses, respectively
- The C/N: Adjust treatment was based on the actual TAN in the culture water (6 g of C was added for each 1 g of TAN)
- > 35% CP commercial feed had C/N=9

Water quality monitoring

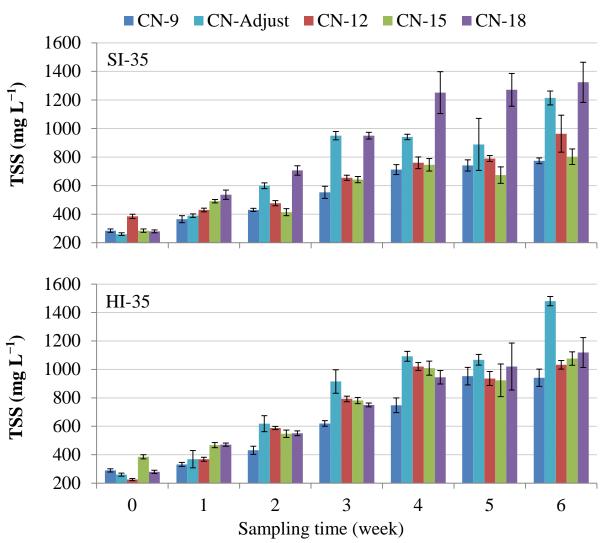
- ➤ Temperature, salinity, dissolved oxygen, and pH were recorded twice daily
- > SS, TSS, VSS, NH₄-N, NO₂-N, NO₃-N, alkalinity, cBOD₅, and turbidity were measured weekly

Shrimp performance

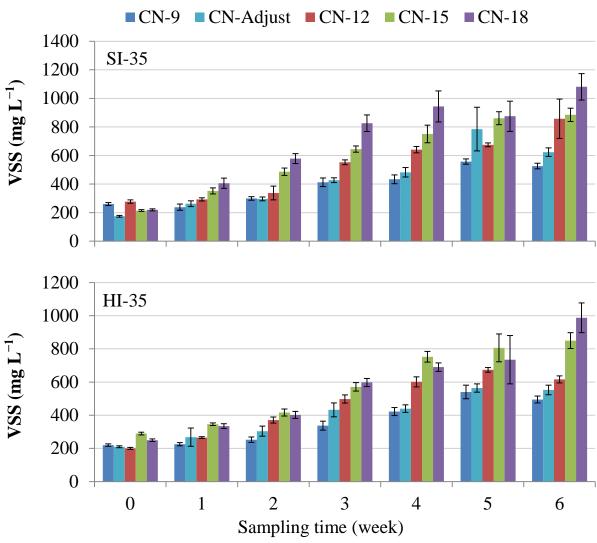
- > Survival (%) = $100 \times (\text{final shrimp count/initial shrimp count})$
- ➤ Weekly growth rate (g/week) = (final average weight initial average weight)/culture weeks
- Biomass = total harvest shrimp weight/water volume
- > FCR = total dry weight of feed offered/total shrimp wet weight gained

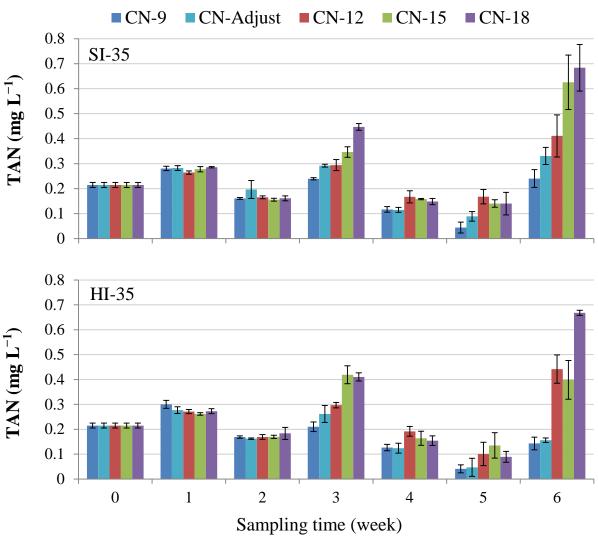


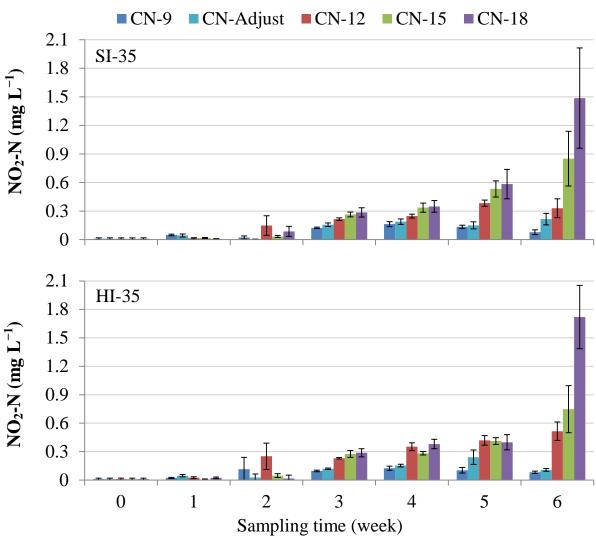
A Two-way Linear Mixed Model showing the effects of feed and C/N ratio on selected water quality parameters during 6-week study with *L. vannamei*

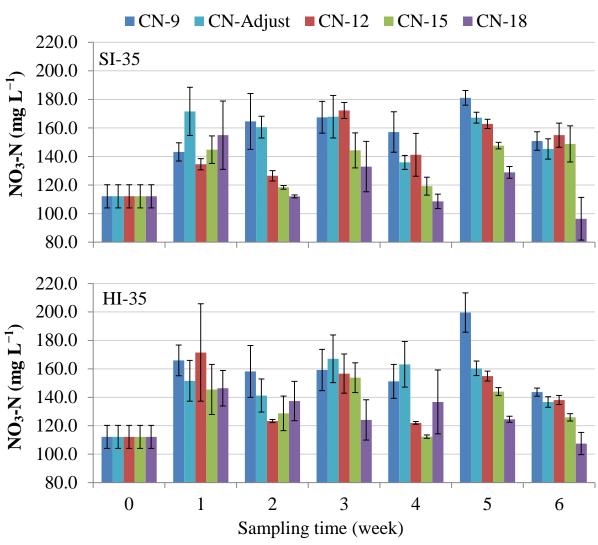

Variables	Significant [†] (P value)				
variables	Diet	C/N	Diet \times C/N		
SS	NS (0.382)	*** (0.000)	NS (0.942)		
TSS	*** (0.000)	*** (0.000)	NS (0.686)		
VSS	** (0.002)	*** (0.000)	NS (0.797)		
TAN	NS (0.977)	NS (0.514)	NS (0.988)		
NO_2 -N	NS (0.914)	* (0.014)	NS (0.842)		
NO_3 -N	NS (0.972)	*** (0.000)	NS (0.686)		
Alkalinity	* (0.043)	*** (0.000)	NS (0.984)		
$cBOD_5$	* (0.046)	** (0.003)	NS (0.389)		
Turbidity	NS (0.985)	*** (0.000)	NS (0.143)		

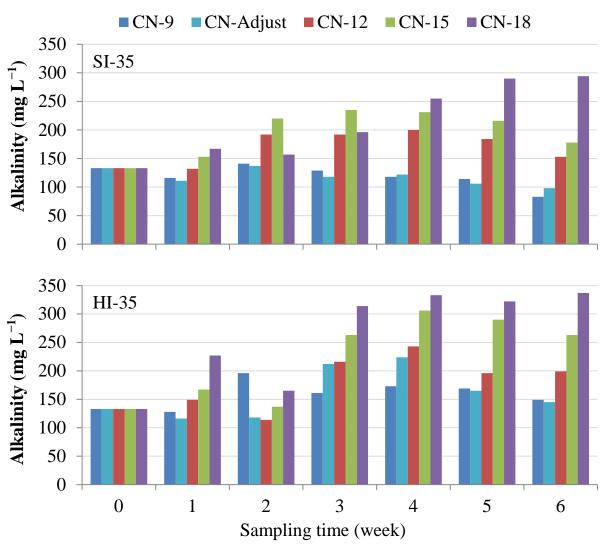
 $^{^{\}dagger}*P < 0.05; **P < 0.01; *** P < 0.001; NS, not significant.$

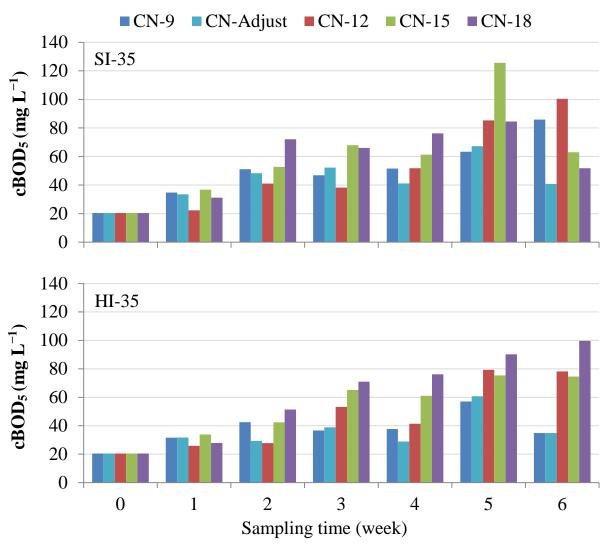


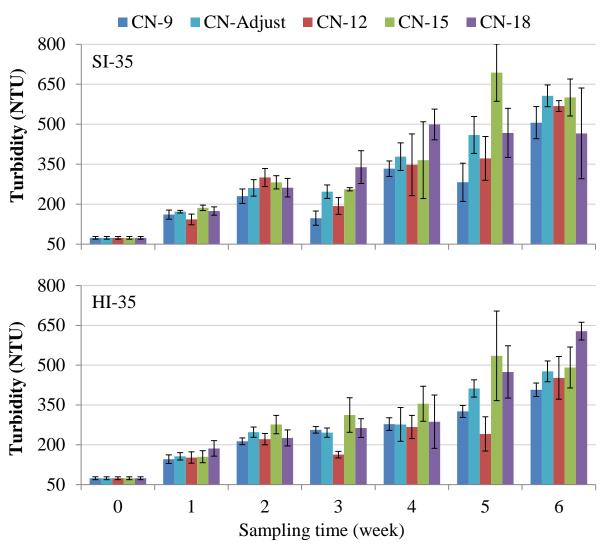


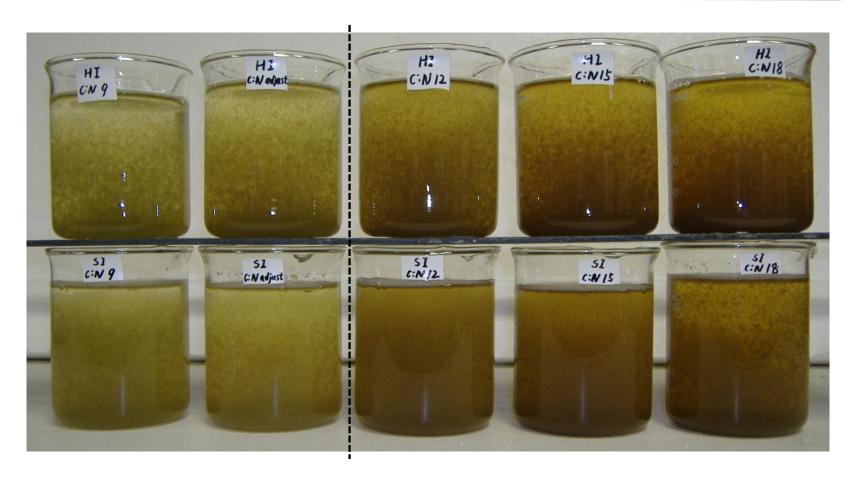












C/N < 12

 $C/N \ge 12$

Two-way Repeated Measures ANOVA showing the effects of feed and C/N ratio on shrimp performance at the end of 6-week study

Voriobles	Significant [†] (<i>P</i> value)				
Variables	Diet	C/N	Diet × C/N		
Final weight	*** (0.000)	*** (0.000)	NS (0.591)		
Growth rate	*** (0.000)	*** (0.000)	NS (0.575)		
Survival	* (0.041)	** (0.004)	NS (0.556)		
Yield	*** (0.000)	*** (0.000)	NS (0.619)		
FCR	*** (0.000)	*** (0.000)	NS (0.956)		

^{†*}P < 0.05; **P < 0.01; *** P < 0.001; NS, not significant.

Means \pm S.D. of final weight, growth, survival, yield, and FCR of *L. vannamei* at the end of 6-week study

	Final Wt. (g)	Growth (g /wk)	Survival (%)	Yield (kg m ⁻³)	FCR
SI-35					
CN-9	8.52 ± 0.26 ab	1.05 ± 0.04 ab	98.50 ± 2.62 ab	$2.46 \pm 0.06^{\mathrm{b}}$	1.55 ± 0.02 ab
CN-Adjust	8.51 ± 0.14 ab	1.05 ± 0.06 ab	99.33 ± 1.46^{b}	$2.48 \pm 0.04^{\mathrm{b}}$	1.54 ± 0.02 a
CN-12	8.75 ± 0.18 b	1.09 ± 0.04 b	$96.67 \pm 0.36^{\mathrm{a}}$	2.48 ± 0.02^{b}	1.52 ± 0.01 a
CN-15	8.24 ± 0.36 ab	1.01 ± 0.02 ab	98.83 ± 0.26 ab	2.39 ± 0.10 ab	1.62 ± 0.08 ab
CN-18	8.09 ± 0.46 a	0.98 ± 0.06 a	96.00 ± 2.18 a	2.27 ± 0.08 a	1.71 ± 0.06 b
HI-35					
CN-9	9.84 ± 0.28 bc	1.27 ± 0.04 °	97.33 ± 0.36 a	2.81 ± 0.08 b	1.29 ± 0.08 b
CN-Adjust	9.75 ± 0.36 bc	1.26 ± 0.02 bc	97.50 ± 0.76 a	2.79 ± 0.10^{b}	1.30 ± 0.10^{b}
CN-12	9.99 ± 0.22 c	$1.30\pm0.02^{\;\mathrm{c}}$	96.50 ± 2.12 a	2.83 ± 0.02^{b}	1.27 ± 0.02^{b}
CN-15	9.20 ± 0.16 ab	1.17 ± 0.06 ab	$97.83 \pm 0.30^{\text{ a}}$	2.64 ± 0.04 a	1.40 ± 0.04 a
CN-18	9.03 ± 0.36 a	1.14 ± 0.08 a	$95.67 \pm 1.64^{\text{ a}}$	2.53 ± 0.12^{a}	$1.47\pm0.12^{\;a}$

Each value represents mean \pm S.D. (n = 4).

For each feed, values in the same row with different superscripts are significantly different (P < 0.05) based on Tukey HSD test.

Summary

- ➤ No significant differences in inorganic N species (TAN, NO₂-N, NO₃-N) between the two feeds
- ➤ Growth & FCR of shrimp fed the HI-35 was significantly better than with the SI-35
- > C/N ratio affected microbial communities
 - \triangleright C/N ratio <12 \rightarrow dominated by algae (green-water)
 - C/N ratio >12→dominated by heterotrophic bacteria (**brown-water**)
 - ➤ C/N ratio > 12→increase in biofloc volume with the increase in C/N ratio
- ➤ Higher C/N ratio resulted in lower NO₃-N concentrations and greater biofloc volume
- C/N ratio of 12 showed best shrimp performance in both feeds

Acknowledgements

- National Institute of Food & Agriculture (NIFA) USDA,
- ➤ Texas A&M AgriLife Research
- ➤ 2012 China State-Sponsored Graduate Study Abroad Program, Chinese Scholarship Council

